Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Plant Commun ; : 100835, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38425040

RESUMO

Cucurbitacin IIa is a triterpenoid isolated exclusively from Hemsleya plants and a non-steroidal anti-inflammatory drug that functions as the main ingredient of prescription Hemslecin capsules and tablets in China. Synthetic biology provides new strategies for production of such valuable cucurbitacins at a large scale; however, the biosynthetic pathway of cucurbitacin IIa has been unknown, and the heterologous production of cucurbitacins in galactose medium has been expensive and low yielding. In this study, we characterized the functions of genes encoding two squalene epoxidases (HcSE1-2), six oxidosqualene cyclases (HcOSC1-6), two CYP450s (HcCYP87D20 and HcCYP81Q59), and an acyltransferase (HcAT1) in cucurbitacin IIa biosynthesis by heterologous expression in Saccharomyces cerevisiae and Nicotiana benthamiana. We achieved high-level production of the key cucurbitacin precursor 11-carbonyl-20ß-hydroxy-Cuol from glucose in yeast via modular engineering of the mevalonate pathway and optimization of P450 expression levels. The resulting yields of 46.41 mg/l 11-carbonyl-20ß-hydroxy-Cuol and 126.47 mg/l total cucurbitacin triterpenoids in shake flasks are the highest yields yet reported from engineered microbes. Subsequently, production of 11-carbonyl-20ß-hydroxy-Cuol by transient gene expression in tobacco resulted in yields of 1.28 mg/g dry weight in leaves. This work reveals the key genes involved in biosynthesis of prescription cucurbitacin IIa and demonstrates that engineered yeast cultivated with glucose can produce high yields of key triterpenoid intermediates. We describe a low-cost and highly efficient platform for rapid screening of candidate genes and high-yield production of pharmacological triterpenoids.

2.
Planta ; 259(5): 98, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522041

RESUMO

MAIN CONCLUSION: A stable genetic transformation system for Erigeron breviscapus was developed. We cloned the EbYUC2 gene and genetically transformed it into Arabidopsis thaliana and E. breviscapus. The leaf number, YUC2 gene expression, and the endogenous auxin content in transgenic plants were significantly increased. Erigeron breviscapus is a prescription drug for the clinical treatment of cardiovascular and cerebrovascular diseases. The rosette leaves have the highest content of the major active compound scutellarin and are an important component in the yield of E. breviscapus. However, little is known about the genes related to the leaf number and flowering time of E. breviscapus. In our previous study, we identified three candidate genes related to the leaf number and flowering of E. breviscapus by combining resequencing data and genome-wide association study (GWAS). However, their specific functions remain to be characterized. In this study, we cloned and transformed the previously identified full-length EbYUC2 gene into Arabidopsis thaliana, developed the first stable genetic transformation system for E. breviscapus, and obtained the transgenic plants overexpressing EbYUC2. Compared with wild-type plants, the transgenic plants showed a significant increase in the number of leaves, which was correlated with the increased expression of EbYUC2. Consistently, the endogenous auxin content, particularly indole-3-acetic acid, in transgenic plants was also significantly increased. These results suggest that EbYUC2 may control the leaf number by regulating auxin biosynthesis, thereby laying a foundation for revealing the molecular mechanism governing the leaf number and flowering time of E. breviscapus.


Assuntos
Arabidopsis , Erigeron , Erigeron/genética , Arabidopsis/genética , Estudo de Associação Genômica Ampla , Ácidos Indolacéticos , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Transformação Genética
3.
BMC Plant Biol ; 24(1): 170, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443797

RESUMO

BACKGROUND: Panax notoginseng (Burk) F. H. Chen is one of the most famous Chinese traditional medicinal plants. The taproot is the main organ producing triterpenoid saponins, and its development is directly linked to the quality and yield of the harvested P. notoginseng. However, the mechanisms underlying the dynamic metabolic changes occurring during taproot development of P. notoginseng are unknown. RESULTS: We carried out metabolomic and transcriptomic analyses to investigate metabolites and gene expression during the development of P. notoginseng taproots. The differentially accumulated metabolites included amino acids and derivatives, nucleotides and derivatives, and lipids in 1-year-old taproots, flavonoids and terpenoids in 2- and 3-year-old taproots, and phenolic acids in 3-year-old taproots. The differentially expressed genes (DEGs) are related to phenylpropanoid biosynthesis, metabolic pathway and biosynthesis of secondary metabolites at all three developmental stages. Integrative analysis revealed that the phenylpropanoid biosynthesis pathway was involved in not only the development of but also metabolic changes in P. notoginseng taproots. Moreover, significant accumulation of triterpenoid saponins in 2- and 3-year-old taproots was highly correlated with the up-regulated expression of cytochrome P450s and uridine diphosphate-dependent glycosyltransferases genes. Additionally, a gene encoding RNase-like major storage protein was identified to play a dual role in the development of P. notoginseng taproots and their triterpenoid saponins synthesis. CONCLUSIONS: These results elucidate the molecular mechanism underlying the accumulation of and change relationship between primary and secondary metabolites in P. notoginseng taproots, and provide a basis for the quality control and genetic improvement of P. notoginseng.


Assuntos
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Metaboloma , Perfilação da Expressão Gênica
4.
Front Genet ; 15: 1349673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317660

RESUMO

Background: C2H2-zinc finger transcription factors comprise one of the largest and most diverse gene superfamilies and are involved in the transcriptional regulation of flowering. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in a number of model plant species, little is known about their expression and function in Coptis teeta. C. teeta displays two floral phenotypes (herkogamy phenotypes). It has been proposed that the C2H2-zinc finger transcription factor family may play a crucial role in the formation of floral development and herkogamy observed in C. teeta. As such, we performed a genome-wide analysis of the C2H2-ZFP gene family in C. teeta. Results: The complexity and diversity of C. teeta C2H2 zinc finger proteins were established by evaluation of their physicochemical properties, phylogenetic relationships, exon-intron structure, and conserved motifs. Chromosome localization showed that 95 members of the C2H2 zinc-finger genes were unevenly distributed across the nine chromosomes of C. teeta, and that these genes were replicated in tandem and segmentally and had undergone purifying selection. Analysis of cis-acting regulatory elements revealed a possible involvement of C2H2 zinc-finger proteins in the regulation of phytohormones. Transcriptome data was then used to compare the expression levels of these genes during the growth and development of the two floral phenotypes (F-type and M-type). These data demonstrate that in groups A and B, the expression levels of 23 genes were higher in F-type flowers, while 15 genes showed higher expressions in M-type flowers. qRT-PCR analysis further revealed that the relative expression was highly consistent with the transcriptome data. Conclusion: These data provide a solid basis for further in-depth studies of the C2H2 zinc finger transcription factor gene family in this species and provide preliminary information on which to base further research into the role of the C2H2 ZFPs gene family in floral development in C. teeta.

5.
Cell Signal ; 115: 111031, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38168631

RESUMO

Tumor-associated macrophages (TAMs) mainly exhibit the characteristics of M2-type macrophages, and the regulation of TAM polarization is a new target for cancer therapy, among which lncRNAs are key regulatory molecules. This study aimed to explore the effects of lncRNA-HOXC-AS2 on non-small cell lung cancer (NSCLC) by regulating TAM polarization. THP-1 cells were used to differentiate into macrophages, and TAMs were obtained by coculture with A549 cells. The M1/M2 cell phenotype and HOXC-AS2 expression were detected, and A549-derived exosomes (A549-exo) were used to elucidate the effects of A549 on macrophage polarization and HOXC-AS2 expression. Then, by interfering with HOXC-AS2 or STAT1, the effects of HOXC-AS2 regulation of STAT1 on the TAM phenotype and STAT1/SOCS1 and STAT1/CIITA pathways were analyzed, and the proliferation and metastasis of NSCLC cells in the coculture system were also detected. Results showed that HOXC-AS2 expression in M2 macrophages and TAMs was significantly higher than that in M1 macrophages, and A549-exo promoted HOXC-AS2 expression and M2 polarization. Intervention HOXC-AS2 resulted in increased M1 marker expression, decreased M2 marker expression, and activation of STAT1/SOCS1 and STAT1/CIITA pathways in TAMs. In addition, HOXC-AS2 was mainly expressed in the cytoplasm of TAMs and could bind to STAT1. Further experiments confirmed that intervention HOXC-AS2 promoted the M1 polarization of TAMs by targeting STAT1 and weakened the promoting effects of TAMs on the proliferation and metastasis of NSCLC. In conclusion, HOXC-AS2 inhibited the activation of STAT1/SOCS1 and STAT1/CIITA pathways and promoted M2 polarization of TAMs by binding with STAT1, thus promoting NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Fator de Transcrição STAT1/metabolismo
6.
Medicine (Baltimore) ; 102(40): e35380, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37800813

RESUMO

The prognosis for advanced melanoma (AM) is extremely poor. Some patients are already in an advanced stage at the time of their first diagnosis and face a significant risk of early death. This study predicted all-cause early death and cancer-specific early death in patients with AM by identifying independent risk factors, building 2 separate nomogram models, and validating the efficiency of the models. A total of 2138 patients diagnosed with AM from 2010 to 2015 were registered in the Surveillance, Epidemiology and End Results (SEER) database and randomly assigned to a training cohort and a validation cohort. Logistic regression models were used to identify the associated independent risk factors. These factors have also been used to build nomograms for early deaths. Next, we validated the model's predictive power by examining subject operating characteristic curves, then applied calibration curves to assess the accuracy of the models, and finally, tested the net benefit of interventions based on decision curve analysis. The results of the logistic regression model showed that marital status, primary site, histological type, N stage, surgery, chemotherapy, bone, liver, lung and brain metastases were significant independent risk factors for early death. These identified factors contributed to the creation of 2 nomograms, which predict the risk of all-cause early death and cancer-specific early death in patients with AM. In the all-cause early death model, the area under the curve was 0.751 and 0.759 for the training and validation groups, respectively, whereas in the cancer-specific early death model, the area under the curve was 0.740 and 0.757 for the training and validation groups. Calibration curves indicated a high degree of agreement between the predicted and observed probabilities, and the decision curve analysis demonstrated a high value for the model in terms of its applicability in clinical settings. These nomograms have practical applications in predicting the risk of early death in patients with AM, helping oncologists to intervene early and develop more personalized treatment strategies.


Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Pesquisa , Neoplasias Encefálicas/epidemiologia , Calibragem , Bases de Dados Factuais , Nomogramas , Programa de SEER , Prognóstico
7.
Mitochondrial DNA B Resour ; 8(1): 7-9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36620315

RESUMO

Epiverta chelonia (Mader 1933; Coleoptera: Coccinellidae) is an important economically and scientifically valuable insect. In this study, the first complete mitochondrial genome of E. chelonia was sequenced and characterized using next-generation sequencing techniques. The circular mitogenome of E. chelonia consists of 17,347 bp including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region (D-loop). The base composition was AT-biased (75.77%). Bayesian Inference and Maximum likelihood phylogenetic trees strongly supported the monophyly of Coccinellinae. Also, E. chelonia was supported as the sister group of Subcoccinella vigintiquatuorpunctata, within Epilachninae. Thus, the E. chelonia mitochondrial genome will be a fundamental resource for understanding the molecular phylogenetic relationships of the species-rich family Coccinellidae of Coleoptera.

8.
Plant J ; 113(6): 1146-1159, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36575579

RESUMO

Marsdenia tenacissima is a medicinal plant widely distributed in the calcium-rich karst regions of southwest China. However, the lack of a reference genome has hampered the implementation of molecular techniques in its breeding, pharmacology and domestication. We generated the chromosome-level genome assembly in Apocynaceae using combined SMRT sequencing and Hi-C. The genome length was 381.76 Mb, with 98.9% of it found on 11 chromosomes. The genome contained 222.63 Mb of repetitive sequences and 21 899 predicted gene models, with a contig N50 of 6.57 Mb. Phylogenetic analysis revealed that M. tenacissima diverged from Calotropis gigantea at least 13.43 million years ago. Comparative genomics showed that M. tenacissima underwent ancient shared whole-genome duplication. This event, together with tandem duplication, contributed to 70.71% of gene-family expansion. Both pseudogene analysis and selective pressure calculations suggested calcium-related adaptive evolution in the M. tenacissima genome. Calcium-induced differentially expressed genes (DEGs) were mainly enriched in cell-wall-related processes. Domains (e.g. Fasciclin and Amb_all) and cis-elements (e.g. MYB and MYC) frequently occurred in the coding and promoter regions of cell-wall DEGs, respectively, and the expression levels of these genes correlated significantly with those of calcium-signal-related transcription factors. Moreover, calcium addition increased tenacissoside I, G and H contents. The availability of this high-quality genome provides valuable genomic information for genetic breeding and molecular design, and lends insights into the calcium adaptation of M. tenacissima in karst areas.


Assuntos
Marsdenia , Plantas Medicinais , Cálcio , Marsdenia/genética , Filogenia , Melhoramento Vegetal
9.
Front Plant Sci ; 14: 1259347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239219

RESUMO

Bergenin is a typical carbon glycoside and the primary active ingredient in antitussive drugs widely prescribed for central cough inhibition in China. The bergenin extraction industry relies on the medicinal plant species Bergenia purpurascens and Ardisia japonica as their resources. However, the bergenin biosynthetic pathway in plants remains elusive. In this study, we functionally characterized a shikimate dehydrogenase (SDH), two O-methyltransferases (OMTs), and a C-glycosyltransferase (CGT) involved in bergenin synthesis through bioinformatics analysis, heterologous expression, and enzymatic characterization. We found that BpSDH2 catalyzes the two-step dehydrogenation process of shikimic acid to form gallic acid (GA). BpOMT1 and AjOMT1 facilitate the methylation reaction at the 4-OH position of GA, resulting in the formation of 4-O-methyl gallic acid (4-O-Me-GA). AjCGT1 transfers a glucose moiety to C-2 to generate 2-Glucosyl-4-O-methyl gallic acid (2-Glucosyl-4-O-Me-GA). Bergenin production ultimately occurs in acidic conditions or via dehydration catalyzed by plant dehydratases following a ring-closure reaction. This study for the first time uncovered the biosynthetic pathway of bergenin, paving the way to rational production of bergenin in cell factories via synthetic biology strategies.

10.
Front Plant Sci ; 13: 852377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401630

RESUMO

Gynostemma longipes contains an abundance of dammarane-type ginsenosides and gypenosides that exhibit extensive pharmacological activities. Increasing attention has been paid to the elucidation of cytochrome P450 monooxygenases (CYPs) and UDP-dependent glycosyltransferases (UGTs) that participate downstream of ginsenoside biosynthesis in the Panax genus. However, information on oxidosqualene cyclases (OSCs), the upstream genes responsible for the biosynthesis of different skeletons of ginsenoside and gypenosides, is rarely reported. Here, an integrative study of the metabolome and the transcriptome in the leaf, stolon, and rattan was conducted and the function of GlOSC1 was demonstrated. In total, 46 triterpenes were detected and found to be highly abundant in the stolon, whereas gene expression analysis indicated that the upstream OSC genes responsible for saponin skeleton biosynthesis were highly expressed in the leaf. These findings indicated that the saponin skeletons were mainly biosynthesized in the leaf by OSCs, and subsequently transferred to the stolon via CYPs and UGTs biosynthesis to form various ginsenoside and gypenosides. Additionally, a new dammarane-II synthase (DDS), GlOSC1, was identified by bioinformatics analysis, yeast expression assay, and enzyme assays. The results of the liquid chromatography-mass spectrometry (LC-MS) analysis proved that GlOSC1 could catalyze 2,3-oxidosqualene to form dammarenediol-II via cyclization. This work uncovered the biosynthetic mechanism of dammarenediol-II, an important starting substrate for ginsenoside and gypenosides biosynthesis, and may achieve the increased yield of valuable ginsenosides and gypenosides produced under excess substrate in a yeast cell factory through synthetic biology strategy.

11.
Zhongguo Zhong Yao Za Zhi ; 46(23): 6149-6162, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34951242

RESUMO

R2 R3-MYB transcription factors are ubiquitous in plants, playing a role in the regulation of plant growth, development, and secondary metabolism. In this paper, the R2 R3-MYB transcription factors were identified by bioinformatics analysis of the genomic data of Erigeron breviscapus, and their gene sequences, structures, physical and chemical properties were analyzed. The functions of R2 R3-MYB transcription factors were predicted by cluster analysis. Meanwhile, the expression patterns of R2 R3-MYB transcription factors in response to hormone treatments were analyzed. A total of 108 R2 R3-MYB transcription factors, named EbMYB1-EbMYB108, were identified from the genome of E. breviscapus. Most of the R2 R3-MYB genes carried 2-4 exons. The phylogenetic tree of MYBs in E. breviscapus and Arabidopsis thaliala was constructed, which classified 234 MYBs into 30 subfamilies. The MYBs in the five MYB subfamilies of A.thaliala were clustered into independent clades, and those in E. breviscapus were clustered into four clades. The transcriptome data showed that MYB genes were differentially expressed in different tissues of E. breviscapus and in response to the treatments with exogenous hormones such as ABA, SA, and GA for different time. The transcription of 13 R2 R3-MYB genes did not change significantly, and the expression patterns of some genes were up-regulated or down-regulated with the extension of hormone treatment time. This study provides a theoretical basis for revealing the mechanisms of R2 R3-MYB transcription factors in regulating the growth and development, stress(hormone) response, and active ingredient accumulation in E. breviscapus.


Assuntos
Erigeron , Genes myb , Proteínas de Plantas , Fatores de Transcrição , Erigeron/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Planta ; 253(5): 91, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33818668

RESUMO

MAIN CONCLUSION: Two UDP-glycosyltransferases from Panax japonicus var. major were identified, and the biosynthetic pathways of three oleanane-type ginsenosides (chikusetsusaponin IVa, ginsenoside Ro, zingibroside R1) were elucidated. Chikusetsusaponin IVa and ginsenoside Ro are primary active components formed by stepwise glycosylation of oleanolic acid in five medicinal plants of the genus Panax. However, the key UDP-glycosyltransferases (UGTs) in the biosynthetic pathway of chikusetsusaponin IVa and ginsenoside Ro are still unclear. In this study, two UGTs (PjmUGT1 and PjmUGT2) from Panax japonicus var. major involved in the biosynthesis of chikusetsusaponin IVa and ginsenoside Ro were identified based on bioinformatics analysis, heterologous expression and enzyme assays. The results show that PjmUGT1 can transfer a glucose moiety to the C-28 carboxyl groups of oleanolic acid 3-O-ß-D-glucuronide and zingibroside R1 to form chikusetsusaponin IVa and ginsenoside Ro, respectively. Meanwhile, PjmUGT2 can transfer a glucose moiety to oleanolic acid 3-O-ß-D-glucuronide and chikusetsusaponin IVa to form zingibroside R1 and ginsenoside Ro. This work uncovered the biosynthetic mechanism of chikusetsusaponin IVa and ginsenoside Ro, providing the rational production of valuable saponins through synthetic biology strategy.


Assuntos
Ginsenosídeos/metabolismo , Glicosiltransferases/metabolismo , Ácido Oleanólico/análogos & derivados , Panax/metabolismo , Difosfato de Uridina/metabolismo , Glicosiltransferases/análise , Glicosiltransferases/genética , Ácido Oleanólico/metabolismo , Panax/enzimologia
14.
Mol Ecol Resour ; 21(1): 153-169, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32985109

RESUMO

Erigeron breviscapus is an important medicinal plant in Compositae and the first species to realize the whole process from the decoding of the draft genome sequence to scutellarin biosynthesis in yeast. However, the previous low-quality genome assembly has hindered the optimization of candidate genes involved in scutellarin synthesis and the development of molecular-assisted breeding based on the genome. Here, the E. breviscapus genome was updated using PacBio RSII sequencing data and Hi-C data, and increased in size from 1.2 Gb to 1.43 Gb, with a scaffold N50 of 156.82 Mb and contig N50 of 140.95 kb, and a total of 43,514 protein-coding genes were obtained and oriented onto nine pseudo-chromosomes, thus becoming the third plant species assembled to chromosome level after sunflower and lettuce in Compositae. Fourteen genes with evidence for positive selection were identified and found to be related to leaf morphology, flowering and secondary metabolism. The number of genes in some gene families involved in flavonoid biosynthesis in E. breviscapus have been significantly expanded. In particular, additional candidate genes involved in scutellarin biosynthesis, such as flavonoid-7-O-glucuronosyltransferase genes (F7GATs) were identified using updated genome. In addition, three candidate genes encoding indole-3-pyruvate monooxygenase YUCCA2 (YUC2), serine carboxypeptidase-like 18 (SCPL18), and F-box protein (FBP), respectively, were identified to be probably related to leaf development and flowering by resequencing 99 individuals. These results provided a substantial genetic basis for improving agronomic and quality traits of E. breviscapus, and provided a platform for improving other draft genome assemblies to chromosome-level.


Assuntos
Erigeron , Genoma de Planta , Asteraceae , Erigeron/genética , Plantas Medicinais/genética
15.
Huan Jing Ke Xue ; 41(2): 728-733, 2020 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608731

RESUMO

Coastal wetland, at the intersection of land and sea, is considered as a "sink", "source", and "transformer" of phosphorus (P). Coastal wetland plays an important role in the global P cycle, and its ability to retain excessive P in water receives increasing attention. In this study, the coastal reed wetland sediments surrounding the Bohai Sea were sampled to investigate P adsorption capacity and loss risk by conducting batch experiments. Results show that the maximum P adsorption capacity (Qmax) was 693.7-2117.2 mg·kg-1, with an average of 1468.6 mg·kg-1. The Qmax decreased in the order of Qilihai Wetland > Beidagang Wetland > Nandagang Wetland > Liaohe Delta Wetland > Shouguang Coastal Wetland > Yellow River Delta Wetland. The P adsorption capacity was related to the contents of Ca, Mg, and TOC. The degree of P adsorption saturation (DPS) and loss risk index (ERI) of the coastal wetland were 0.28%-4.50% and 0.53%-10.10%, respectively. The ERI suggested that the P loss risk was relatively low for coastal reed wetland surrounding the Bohai Sea except for the moderate loss risk for Shouguang coastal wetland. In summary, the reed coastal wetland around Bohai Sea demonstrated significantly P storage capacity and served as a P sink for water P. We recommend to fully utilize the coastal wetland to reduce point or non-point source pollution (e.g., P) during the remediation or recovery of the polluted Bohai Sea.


Assuntos
Fósforo/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , Adsorção , China , Monitoramento Ambiental , Sedimentos Geológicos , Rios
16.
ACS Appl Mater Interfaces ; 12(19): 21845-21853, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32319283

RESUMO

Photonic detection with narrow spectrum selectivity is very important to eliminate the signal from obtrusive light, which can improve the anti-interference ability of the infrared imaging system. While the self-driving effect inherent to the p-n junction is very attractive in optic-electronic integration, the application of the p-n junction in narrow-band photodetectors is limited by the usual broad absorption range. In this work, a self-powered filterless narrowband near-infrared photodetector based on CuGaTe2/silicon p-n junction was reported. The as-fabricated photodetector exhibited typical narrow-band response which shall be ascribed to the slightly smaller band gap of Si than CuGaTe2 and the restricted photocurrent generation region in the p-n heterojunction by optimizing CuGaTe2 thickness. It is observed that when the thickness of CuGaTe2 film is 143 nm, the device exhibits a response peak centered around 1050 nm with a full-width at half-maximum of ∼118 nm. Further device analysis reveals a specific detectivity of ∼1012 Jones and a responsivity of 114 mA/W under 1064 nm illumination at zero bias. It was also found that an image system based on the narrowband CuGaTe2/Si photodetector showed high noise immunity for its spectral selective characteristics.

17.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093420

RESUMO

Erigeron breviscapus (Vant.) Hand.-Mazz. is a famous traditional Chinese medicine that has positive effects on the treatment of cardiovascular and cerebrovascular diseases. With the increase of market demand (RMB 500 million per year) and the sharp decrease of wild resources, it is an urgent task to cultivate high-quality and high-yield varieties of E. breviscapus. However, it is difficult to obtain homozygous lines in breeding due to the self-incompatibility (SI) of E. breviscapus. Here, we first proved that E. breviscapus has sporophyte SI (SSI) characteristics. Characterization of the ARC1 gene in E. breviscapus showed that EbARC1 is a constitutive expression gene located in the nucleus. Overexpression of EbARC1 in Arabidopsis thaliana L. (Col-0) could cause transformation of transgenic lines from self-compatibility (SC) into SI. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that EbARC1 and EbExo70A1 interact with each other in the nucleus, and the EbARC1-ubox domain and EbExo70A1-N are the key interaction regions, suggesting that EbARC1 may ubiquitinate EbExo70A to regulate SI response. This study of the SSI mechanism in E. breviscapus has laid the foundation for further understanding SSI in Asteraceae and breeding E. breviscapus varieties.


Assuntos
Arabidopsis , Erigeron/genética , Proteínas de Plantas , Plantas Geneticamente Modificadas , Ubiquitina-Proteína Ligases , Arabidopsis/enzimologia , Arabidopsis/genética , Erigeron/enzimologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
18.
Mol Phylogenet Evol ; 145: 106734, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31972240

RESUMO

Orthoptera is the most diverse order of polyneopterans, and the forewing and hindwing of its members exhibit extremely variability from full length to complete loss in many groups; thus, this order provides a good model for studying the effects of insect flight ability on the evolutionary constraints on and evolutionary rate of the mitochondrial genome. Based on a data set of mitochondrial genomes from 171 species, including 43 newly determined, we reconstructed Orthoptera phylogenetic relationships and estimated the divergence times of this group. The results supported Caelifera and Ensifera as two monophyletic groups, and revealed that Orthoptera originated in the Carboniferous (298.997 Mya). The date of divergence between the suborders Caelifera and Ensifera was 255.705 Mya, in the late Permian. The major lineages of Acrididae seemed to have radiated in the Cenozoic, and the six patterns of rearrangement of 171 Orthoptera mitogenomes mostly occurred in the Cretaceous and Cenozoic. Based on phylogenetic relationships and ancestral state reconstruction, we analysed the evolutionary selection pressure on and evolutionary rate of mitochondrial protein-coding genes (mPCGs). The results indicated that during approximately 300 Mya of evolution, these genes experienced purifying selection to maintain their function. Flightless orthopteran insects accumulated more non-synonymous mutations than flying species and experienced more relaxed evolutionary constraints. The different wing types had different evolutionary rates, and the mean evolutionary rate of Orthoptera mitochondrial mPCGs was 13.554 × 10-9 subs/s/y. The differences in selection pressures and evolutionary rates observed between the mitochondrial genomes suggested that functional constraints due to locomotion play an important role in the evolution of mitochondrial DNA in orthopteran insects with different wing types.


Assuntos
Evolução Biológica , Mitocôndrias/genética , Ortópteros/classificação , Animais , Biodiversidade , Fases de Leitura Aberta/genética , Ortópteros/anatomia & histologia , Ortópteros/genética , Filogenia , RNA Ribossômico/genética , Asas de Animais/anatomia & histologia
19.
BMC Plant Biol ; 19(1): 451, 2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655543

RESUMO

BACKGROUND: Taproot thickening is a complex biological process that is dependent on the coordinated expression of genes controlled by both environmental and developmental factors. Panax notoginseng is an important Chinese medicinal herb that is characterized by an enlarged taproot as the main organ of saponin accumulation. However, the molecular mechanisms of taproot enlargement are poorly understood. RESULTS: A total of 29,957 differentially expressed genes (DEGs) were identified during the thickening process in the taproots of P. notoginseng. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment revealed that DEGs associated with "plant hormone signal transduction," "starch and sucrose metabolism," and "phenylpropanoid biosynthesis" were predominantly enriched. Further analysis identified some critical genes (e.g., RNase-like major storage protein, DA1-related protein, and Starch branching enzyme I) and metabolites (e.g., sucrose, glucose, fructose, malate, and arginine) that potentially control taproot thickening. Several aspects including hormone crosstalk, transcriptional regulation, homeostatic regulation between sugar and starch, and cell wall metabolism, were identified as important for the thickening process in the taproot of P. notoginseng. CONCLUSION: The results provide a molecular regulatory network of taproot thickening in P. notoginseng and facilitate the further characterization of the genes responsible for taproot formation in root medicinal plants or crops.


Assuntos
Redes Reguladoras de Genes , Metaboloma , Panax notoginseng/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Transcriptoma , Regulação da Expressão Gênica de Plantas , Panax notoginseng/crescimento & desenvolvimento , Panax notoginseng/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia
20.
Electrophoresis ; 40(20): 2699-2705, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31172539

RESUMO

Copper is an indispensable trace element for human health. Too much or too little intake of copper ion (Cu2+ ) can lead to its own adverse health conditions. Therefore, detection of Cu2+ is always of vital importance. In this work, a simple sensor was developed for rapid detection of trace Cu2+ in water, in which L-cysteine (Cys) as a molecular probe was self-assembled on a gold interdigital electrode to form a monolayer for specific capture of Cu2+ . The interfacial capacitance of interdigital electrode was detected to indicate the target adsorption level under an AC signal working as the excitation to induce directed movement and enrichment of Cu2+ to the electrode surface. This sensor reached a limit of detection of 4.14 fM and a satisfactory selectivity against eight other ions (Zn2+ , Hg2+ , Pb2+ , Cd2+ , Mg2+ , Fe2+ , As3+ , and As5+ ). Testing of spiked tap water was also performed, demonstrating the sensor's usability. This sensor as well as the detection method shows a great application potential in fields such as environmental monitoring and medical diagnosis.


Assuntos
Cobre/análise , Cisteína/química , Técnicas Eletroquímicas/métodos , Poluentes Químicos da Água/análise , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Limite de Detecção , Modelos Lineares , Metais Pesados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...